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Abstract

The interaction between fluidelastic instability and acoustic resonance in a normal triangular tube array has been

previously quantified, although no physical mechanism was identified. In this study interaction between fluidelastic

instability and acoustic resonance is extended to a second array. In addition, to assess the interaction between fluidelastic

instability and acoustic resonance two possibilities are examined. The first examines the effect of acoustic resonance on the

static fluid forces on a stationary cylinder and the second the effect of acoustic resonance on the time delay between tube

motion and the resultant flow reorganisation close to the measurement cylinder. It is found that acoustic resonance did not

modify the static fluid force. Acoustic resonance is seen to modify the time delay between tube motion and flow field

around the cylinder. It is proposed that acoustic streaming is affecting the time delay process resulting in the drop in

fluidelastic vibration amplitude observed.

r 2009 Published by Elsevier Ltd.
1. Introduction

It is well known that an array of circular tubes subject to fluid cross-flow may exhibit large amplitude self-
induced vibration known as fluidelastic instability (FEI). Chen [1] classified the phenomenon under two
distinct mechanisms: fluid damping controlled instability and fluid stiffness controlled instability. This study is
concerned with fluid damping controlled instability. Instability occurs in this mechanism when the fluid
damping goes negative. Furthermore, it has been suggested that there is a time delay between tube motion and
the resulting fluid forces at the root of the damping controlled mechanism.

As the array is enclosed within a duct, the system may also experience acoustic resonance in addition to
fluidelastic instability, the frequency of which may be several orders of magnitude greater than the
fundamental frequency of the structure. Thus, it might be expected that these two phenomena would be
independent. This perspective has been widely accepted in relation to the interaction between fluidelastic
ee front matter r 2009 Published by Elsevier Ltd.
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Nomenclature

AM , BM , c constants
d tube diameter
f n excitation frequency (Hz)
f s sample frequency (Hz)
M number of harmonics
P=d pitch ratio
u local velocity component—in-flow direc-

tion
U free stream flow velocity
Uc critical flow velocity
Ug gap flow velocity
v local velocity component—cross-flow di-

rection
vM velocity at Mth harmonic
Vr reduced gap velocity

y tube displacement
_y tube velocity
€y tube acceleration
Df phase difference
Dt time delay
d logarithmic decrement
dst structural logarithmic decrement
z damping ratio
r density of air
o natural frequency (rad s�1)
APV acoustic particle velocity
AR acoustic resonance
DC direct current
EMD electromagnetic damper
EMS electromagnetic shaker
FEI fluidelastic instability
SPL sound pressure level
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instability and vortex shedding or acoustic resonance. However, Price and Zahn [2] and Meskell and
Fitzpatrick [3] reported an apparent interaction between fluidelastic instability and acoustic resonance. Price
and Zahn reported the fluidelastic behaviour of a single flexible tube in a normal triangular tube array
(P=d ¼ 1:375) in air. The flexible tube was free to oscillate in both the lift and drag directions. They reported
an interaction between fluidelastic instability (�7Hz) and acoustic resonance (733Hz). When the flexible tube
was mounted in the first row, fluidelastic instability was apparently triggered by acoustic resonance. The
acoustic resonance was noted to have organised the flow throughout the tube array. The authors also note that
acoustic resonance sometimes had a minor effect on the cylinder vibration amplitude. When the flexible tube
was positioned in rows 2–7, there was typically a change in the vibration amplitude coincident with the
acoustic resonance. More recently, Meskell and Fitzpatrick reported on the fluidelastic behaviour of a
centrally located tube with a natural frequency of 6.6Hz in a normal triangular tube array with pitch ratio of
1.32. The flexible tube was free to oscillate in the lift direction only. They reported that fluidelastic instability
was suppressed when the free stream flow velocity reached 9m s�1. This was accompanied by an acoustic
resonance at 1050Hz corresponding to the second transverse mode of the duct.

In a previous study the authors [4] reproduced and quantified the apparent interaction between fluidelastic
instability and acoustic resonance (second transverse acoustic mode) for a single flexible in a five row normal
triangular tube array (P=d ¼ 1:32). The approach taken was to artificially excite acoustic resonance and
quantify the effect of acoustic resonance on fluidelastic instability by modifying three independent variables:
speaker power (i.e. sound pressure level), free stream flow velocity and structural damping. The current study
briefly recalls the quantification of the effect of acoustic resonance on fluidelastic instability for P=d ¼ 1:32
extending the analysis to include P=d ¼ 1:58 before proceeding on to a more comprehensive analysis of the
interaction between the phenomena.
2. Experimental setup

Tests were carried out in draw down wind tunnel with a velocity range from 2 to 14m s�1 with a free stream
turbulence intensity of less than 1%. The flow velocity was measured using a pitôt-static tube coupled with a
micromanometer installed upstream of the test section. An array of 38mm cylinders in a normal triangular
configuration was housed in the test section as shown in Fig. 1. The arrays under test were two five row normal
triangular tube arrays with pitch ratios of 1.32 and 1.58. The tubes in the array are rigidly fixed, except for one
tube which will be referred to as the instrumented cylinder (shaded cylinder, Fig. 1). For vibration tests, the
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Fig. 1. P=d ¼ 1:32; test section schematic.

Fig. 2. Flexible tube with the electromagnetic damper in situ.
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instrumented cylinder was flexibly mounted and was free to oscillate in the lift direction, y, only. The tube is
rigid in construction, however, it is mounted on a flexible cantilevered support outside of the tunnel which is
isolated from the wind tunnel test section. The structural damping of the system is controlled by a simple non-
contact electromagnetic damper (EMD) consisting of a permanent magnet, a coil and a range of variable
resistors. The level of damping is set by modifying the resistance in the circuit. The advantage of this setup is
that there is no mechanical connection between the magnet and the coil so there is no change in structural
stiffness [3]. A schematic illustrating the mounting scheme for the flexible tube as well as the electromagnetic
damper can be seen in Fig. 2. Also shown is a sectioned view of the test section floor through which the flexible
tube was situated. The electromagnetic damper /shaker arrangement was also used for forced vibration tests
by applying a voltage across the coil. For the force measurement tests, the instrumented tube had 36 surface
pressure taps at 10� intervals located along the centre span of the tube which was mounted on an x� y

traverse (located outside the wind tunnel). Each tapping was monitored with a dedicated pressure transducer.



ARTICLE IN PRESS
J. Mahon, C. Meskell / Journal of Sound and Vibration 324 (2009) 91–10694
Artificial excitation of acoustic resonance in the tube array was performed using two 225W speakers
(Eminence Beta 8) located on both side walls of the test section as shown in Fig. 1. The speakers were wired in
anti-phase and driven by a HP35665A dynamic signal analyzer via USA 370 amplifier to excite the second
acoustic mode of the duct.

The tube oscillation was measured using a PCB quartz shear accelerometer with a useful range of
0.2–7000Hz (based on a maximum 5% variation in sensitivity). The accelerometer was mounted on the tube
support as shown in Fig. 2. The acoustic sound pressure level was measured using 6.7mm (G.R.A.S)
microphones flush mounted in the test section. The microphones had a sound pressure level upper limit of
194 dB with 3% distortion. A Brüel and Kjaer Sound Level Calibrator Type 4231 was used to calculate the
sensitivity of the microphones at a frequency of 1000Hz and a pressure of 1 Pa (94 dB). Surface pressure was
measured using Senotec 24 PC Series differential pressure transducers with the reference vented to
atmosphere. In effect the gauge pressure was measured. Local flow velocity measurements were made using a
single hot-wire probe which was rotated to measure both the u and v direction velocity components. The hot-
wire anemometer used in this setup was a DISA 55M01 system with a 55M10 Constant-Temperature
Anemometer standard bridge. The readings from these instruments were digitised and logged using an
National Instruments 8 channel (NI PXI-4472B), 24 bit data acquisition frame. Each channel was
simultaneously sampled and automatically low pass filtered to avoid aliasing. Additional information about
the test setup and equipment used can be found in Mahon [5].

3. Results

In the first instance, it was verified that a single flexible cylinder in the pitch ratios of 1.32 and 1.58 became
unstable due to fluidelastic instability. At each flow velocity the tube was given time to establish a steady
motion. Tube acceleration was then measured for 600 s at a sample frequency of 64Hz to acquire a steady
RMS value of vibration amplitude. With anti-aliasing filters the dynamic range was 0–29Hz. Within this
frequency range only the first structural mode (6.6Hz or 41:47 rad s�1) was measured with the higher
frequency modes not included. From the tube acceleration data, an estimate of the tube displacement was
extracted. As the flow velocity was increased, fluidelastic instability was apparent and was characterised by the
rapid increase in vibration amplitude. The change in slope of the vibration amplitude curve has been used as a
practical definition of threshold velocity, Uc (e.g. Ref. [6]). The alternative definition of critical velocity based
on amplitude levels (rather than amplitude gradients) proposed by Yeung and Weaver [7] was also satisfied.
Fig. 3 plots the stability threshold in terms of reduced gap velocity and mass damping parameter together with
data from Austermann and Popp [6] and Price and Zahn [2]. These two sources were chosen as they have a
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Fig. 3. Comparison of measured stability thresholds: �, Austermann and Popp [6], P=d ¼ 1:25; 5, Austermann and Popp [6],

P=d ¼ 1:375; n, Price and Zahn [2], P=d ¼ 1:375; ’, present, P=d ¼ 1:32; E, present, P=d ¼ 1:58.
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similar set up to the current experiments (a single flexible cylinder in a normal triangular array and air as the
working fluid). It can be seen that the current results compare favourably with the data available.

3.1. Effect of acoustic resonance

3.1.1. Pitch ratio ¼ 1:32
The effect of acoustic resonance on fluidelastic instability was quantified for the pitch ratio of 1.32 in a

previous paper [4]. A brief review of the measurements and results are presented here. The effect of acoustic
resonance on fluidelastic instability was quantified by artificially exciting the duct acoustics at various loudness
levels and for a range of flow velocities and levels of structural damping. Acoustic resonance was found to
modify the fluidelastic vibration amplitude. Fig. 4 shows a time trace of tube displacement at dst ¼ 0:088 and
U ¼ 4:5m s�1 with and without acoustic excitation. At t ¼ 0 s acoustic excitation was applied with a speaker
power of 64W (SPL ¼ 140 dB). It was seen that the effect of acoustic resonance was to reduce the vibration
amplitude by more than 50%. In fact, the applied acoustic field increased the critical velocity, delaying the
onset of fluidelastic instability as illustrated in Fig. 5.
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Fig. 4. P=d ¼ 1:32; time trace of tube displacement. Acoustic excitation applied at t ¼ 0 s.
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Fig. 5. RMS of tube vibration at dst ¼ 0:088: n, without acoustic excitation and �, with artificially excited acoustic resonance
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It was also shown that the effect of acoustic resonance on fluidelastic instability was dependent on speaker
power. The fluidelastic vibration amplitude reduces with increasing speaker power as illustrated in Fig. 6. It
was also apparent that the effect of acoustic resonance on fluidelastic instability was dependent on flow
velocity and structural damping. The effect of the acoustic resonance on fluidelastic vibration amplitude
varied with cross-flow velocity but the nature of this was uncertain. Also, the lower the structural damping, the
more responsive the fluidelastic mechanism was to the artificially excited acoustic resonance. In terms of the
system dynamics, acoustic resonance adds damping reducing the apparent negative fluid damping associated
with fluidelastic instability. Further results on the interaction between acoustic resonance and fluidelastic
instability for P=d ¼ 1:32, as well as the identification technique for obtaining the fluid damping can be found
in Mahon and Meskell [4].
3.1.2. Pitch ratio ¼ 1:58
Experimental results on the effect of acoustic resonance (1106Hz) on fluidelastic instability in the pitch ratio

of 1.58 which have not been published previously are examined in this section. Fig. 7 shows a sequence of tests
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Fig. 6. P=d ¼ 1:32; vibration amplitude against input power to speaker: n, dst ¼ 0:077; 5, dst ¼ 0:098; �, dst ¼ 0:123.
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Fig. 7. P=d ¼ 1:58; sequence of tests from left to right showing vibration amplitude against speaker power at U ¼ 9m s�1 and dst ¼ 0:030.
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conducted at a structural damping level (dst) of 0.030 and a flow velocity (U) of 9m s�1. The test sequence
(1–7) moves from left to right with the input power to the speaker varying accordingly (l to r: 0, 2, 0, 32, 0, 64,
0W). The tests were repeated five times. It was observed that the acoustic resonance had no significant effect
on the vibration amplitude. The amplitude varied from test to test independently of whether forced acoustics
was applied or not. It was also observed the amount of scatter varies from test to test. For example, there is
significantly less scatter in test 2 compared with test 5. This is due to the jet switching phenomenon observed in
this pitch ratio. Fig. 8 shows the time resolved pressure signal from a pressure tapping (y ¼ 230� see Fig. 13 for
angular positioning) on a static cylinder at the same location as the flexible tube. There appears to be a
bi-stable flow regime (jet switching) in the pitch ratio of 1.58. Fig. 9 examines the limit cycle amplitude of the
flexible tube when the system was in a post stable regime. It was found that well established limit cycle
amplitudes are observed for the pitch ratio of 1.32 but not for P=d ¼ 1:58; the response was dominated by the
natural frequency, but the response was more akin to forcing by a narrow band random excitation which
could be explained by the jet switching observed. It is also clear from the viewing of both Figs. 8 and 9 that the
phenomena of jet switching is sporadic in nature and hence, this is why such a difference in scatter was
observed from test to test. Further details on jet switching and surface pressure measurements in tube arrays
can be found in Mahon [5].

Tests examining the effect of acoustic resonance on fluidelastic instability for the pitch ratio of 1.58 were
repeated for other flow velocities and levels of damping. More specifically, for a structural damping level of
0.030, tests were also conducted at a velocity of 11m s�1 and for a structural damping level of 0.017, tests were
conducted for velocities of 7 and 9m s�1. Irrespective ofwhich data set was examined the outcome remained
the same, that is the effect of acoustic resonance on fluidelastic instability in the pitch ratio of 1.58 was
negligible.

It was found that acoustic resonance was shown to affect the fluidelastic behaviour of a single flexible
cylinder in the pitch ratio of 1.32, however, no effect was found for the pitch ratio of 1.58. This suggests a
fundamental difference in the fluidelastic behaviour between the two arrays tested and is discussed below.

3.2. Possible physical mechanisms

The effect of acoustic resonance on fluidelastic instability has been quantified above. However, it is difficult
to envisage the physics of a true interaction between fluidelastic instability and acoustic resonance. In a
previous study the authors [4] examined alternatives to an interaction between the two phenomena which
could explain the observations discussed.
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Fig. 8. Time resolved pressure signal; y=d ¼ 0% at y ¼ 230�.
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Fig. 9. Tube motion when the tube is vibrating in a post stable regime for P=d ¼ 1:32 and 1.58 at various flow velocities: (a) P=d ¼ 1:32;
dst ¼ 0:123, U ¼ 4:5m=s; (b) P=d ¼ 1:32; dst ¼ 0:123, U ¼ 6:5m=s; (c) P=d ¼ 1:58; dst ¼ 0:030, U ¼ 9m=s; (d) P=d ¼ 1:58; dst ¼ 0:030,
U ¼ 13m=s.
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�
 It was reported that acoustic resonance adds positive damping. Tests in quiescent fluid showed that the
sound field did not provide an additional damping force independently of the flow, meaning superposition
of independent phenomena was excluded.

�
 Blevins and Bressler [8] and Feenstra et al. [9] reported that acoustic resonance can cause a change in the
pressure drop across the array, hence a change in the free stream flow velocity. Such findings were not
observed.

�
 Relocating the flexible cylinder to examine the effect of acoustic particle velocity (APV) did not result in a
significant change in behaviour, indicating that the effect of acoustic particle velocity was small.

4. Interaction between fluidelastic instability and acoustic resonance explored

It was reported above that acoustic resonance was found not to have an effect on fluidelastic vibration
amplitude in P=d ¼ 1:58, so the analysis in this section is restricted to P=d ¼ 1:32. However, an explanation
as to why acoustic resonance had no effect on fluidelastic vibration amplitude for P=d ¼ 1:58 in the context
of the analysis in this section will be discussed. Two possibilities are examined which are based on the
quasi-steady framework proposed by Price and Paidoussis [10] to model fluidelastic instability. Although the
analysis was quasi-steady, the resulting fluid damping and stiffness matrices contain frequency dependent
terms resulting from the introduction of a time delay effect. In simple terms this separates the fluidelastic force
into a magnitude dependent on the static fluid force and a phase dependent on the time delay. In the
magnitude dependent part, the fluid forces (lift and drag) are assumed to be identical to those measured with
the tube at rest in the same location (this is the quasi-static assumption) and is shown in Eq. (1). The phase
dependent (time delay) part is based on the work of Simpson and Fowler [11]. It is argued that the origin of the
time delay was twofold: there is a time delay between the fluid particles leaving an upstream row of cylinders
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and arriving at a downstream row cylinders; and, a flow retardation effect as the flow approaches the cylinder.
Because the flow slows down as it approaches the cylinder, the resulting fluid flow arrives at the cylinder at
some interval of time later than it would have done had the flow velocity been constant. Irrespective of the
origin of the time delay, Price and Paidoussis assuming harmonic motions introduces the time delay into
Eq. (1) yielding Eq. (2). This can be further manipulated to calculate the critical velocity for the onset of
fluidelastic instability . Granger and Paidoussis extended the model to use a memory function due to vorticity
convection but for sinusoidal motion, this will reduce to a time delay

Fy ¼
1

2
U2ld

@CL

@y

� �
y� CD0

_y

U

� �� �
(1)

where @CL=@y is the change in lift force with tube displacement, CD0
is the drag force at zero displacement

Fy ¼
1

2
U2ld e�ioDt @CL

@y

� �
y� CD0

_y

U

� �� �
(2)

It is seen in Eq. (2) that the fluid force separates into two components: the static fluid forces (steady effects)
qCL=qy and CD0

; and unsteady effects caused by the time delay Dt.

4.1. Effect of acoustic resonance on the static fluid force

The effect of acoustic resonance on the surface pressure distribution around a static cylinder in the third row
of the array was examined. Tests were conducted for a number of flow velocities (U ¼ 2; 4; 6; 7; 8; 10m s�1);
and at a range of tube displacements (y=d ¼ 0%, 1%, 3%, 5%, 7%, 10%); at various speaker input power (0,
16, 32, 64W). The mean pressure was measured for 120 s at sample rate of 64Hz. The pressure data were
integrated into fluid forces (lift and drag).

Figs. 10 and 11 show the mean pressure distribution with and without forced acoustics at the second
acoustic mode of the duct. At the lower velocities of 2 and 4m s�1, acoustic resonance has a small effect on the
mean pressure distribution. The effect of the imposed acoustics shows a lesser effect at the higher velocities of
6, 7, 8 and 10m s�1. When the tube was displaced similar findings were observed. The small changes in
pressure distribution at lower velocities were not translated into any significant effect on the lift and drag.
Fig. 12 plots the lift and drag coefficient at y=d ¼ 5% without forced acoustics (0W) and with forced acoustics
at three levels; 16, 32 and 64W. Differences between the data with and without forced acoustics are observed.
However, no trend emerges as a function of speaker power (or sound pressure level). Furthermore, the
differences observed between the data sets are comparable to the random variation in the data. Thus, the effect
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Fig. 10. Pressure distribution around at U ¼ 4m s�1: –, no acoustics; � � �, frequency ¼ 1092Hz (SPL ¼ 140dB).
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of the second acoustic mode on the cylinder was minimal, suggesting that acoustic resonance was not affecting
the static forces on the cylinder surface. A maximum sound pressure level of 140 dB was used which
corresponds to a pressure of 200 Pa. It is acknowledged that at higher sound pressure levels that the effect of
acoustic resonance on the mean surface pressure would be more significant as reported by Fitzpatrick et al.
[12]. They reported that artificially excited acoustic resonance (160 dB) modified the pressure distribution
around cylinders in the 13th row of a 26 row in-line array (P=d ¼ 1:73). Acoustic resonance altered the
velocity gradients across the array thus modifying the force on the cylinder. In the current study, where the
sound pressure level was an order of magnitude lower, the effect on the static fluid force was small. Hence, it is
concluded that the modification of static fluid forces is not the cause of the observed interaction between
fluidelastic instability and acoustic resonance.

4.2. Time delay

When fluidelastic instability is discussed in the literature, a time delay between the tube motion and the
resulting fluid forces is thought to be at the root of fluidelastic instability . The exact nature of the time delay is
unclear and has yet to be measured directly. There is some evidence that it exists; Granger and Paidoussis [13]
indirectly measured the cause of the time delay using experimental data and a quasi-unsteady model. Abd-
Rabbo and Weaver [14] conducted a flow visualisation on rotated square array with P=d ¼ 1:41 and water
cross-flow. For a single flexible cylinder, flow visualisation ‘‘revealed clear flow redistribution with a phase
lag’’. Numerous studies have measured fluid stiffness and damping from which the time delay could be
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Fig. 13. Hot-wire positions around the instrumented cylinder.
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inferred e.g. Refs. [15,16]. It is also apparent that the inclusion of a time delay or phase lag is a prerequisite for
the models developed, as without a time delay, the phenomenon cannot be modelled. However, the
uncertainty about the origin of the time delay results in different physical explanations for the inclusion of a
time delay in the models to predict fluidelastic instability . Nonetheless, Andjelic and Popp [17] showed the
importance of a time delay, comparing their experimental data with the ‘‘wavy wall channel model’’ developed
by Lever and Weaver [18]. The time delay in the Lever and Weaver model was obtained from various
geometric length scales. Andjelic and Popp found that the fit between the analytical curve and experimental
data was poor. Modifying the geometric length scales changed the time delay and the stability boundary.
A modification in the time delay of the other models will also result in a change in the stability boundary.
Indeed, the parameter values for the memory function of Granger and Paidoussis are obtained by fitting the
model to experimental threshold data.

An attempt to measure a time delay between tube motion and a point in the flow located near the flexible
cylinder is discussed. In an ideal setup, a time delay between tube motion and fluid forces would be measured.
This was not achievable due to limitations in the setup. The justification for the current approach stems from
the fact that the fluid forces on the cylinder are as a direct consequence of what is happening in the flow
around the cylinder. Hence a relationship between the fluid flow and fluid forces are closely related. It
therefore seems reasonable to measure the response of the fluid instead of the fluid force as a first attempt to
measure the time delay. This conceptual approach is also consistent with the assumption of the Lever and
Weaver [18] model.

The flexible cylinder was forced to vibrate at its natural frequency of 6.6Hz. This was achieved using the
electromagnetic shaker (EMS) system described previously. The input signal was generated using a HP35665A
dynamic signal analyzer via a USA 370 amplifier. The excited vibration amplitude chosen corresponded to
2.5% tube diameter (an RMS value of 1.8%). Using the electromagnetic damper the maximum level of
damping achieved was dst ¼ 0:205. In an effort to reduce the effect of turbulent buffeting additional damping
was added. This was achieved by adhering lengths of rubber to the cantilever support. This modification
resulted in the damping increasing from dst ¼ 0:205 to 0.410. At the new level of damping the tube did not go
unstable due to fluidelastic instability for the velocity range of the wind tunnel. Tests were conducted for three
free stream flow velocities: 4, 7 and 10m s�1. The local velocity around the cylinder was measured using a
single hot-wire probe located on a curve that was equidistant between the instrumented cylinder and
neighbouring cylinders at y ¼ 15�; 30�; 60�; 90�; 120�; 150� and 165� (see Fig. 13). Measurements were made in
both the in-flow (u) and cross-flow (v) directions. Each test was conducted for 15 s at a sample rate of 8192Hz.
With the excitation frequency of 6.6Hz this translates to 99 averages thus improving the signal-to-noise ratio
by a factor of 10.

4.2.1. Analysis technique

A number of approaches were explored to extract the time delay between the tube response and the local
flow velocity. The first approach used the cross-spectrum between the tube response and the local flow velocity
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signal to extract the time delay. However, this approach was limited due to the relatively poor frequency
resolution that could be resolved given the test parameters. The cross-correlation between the two signals
was also attempted, providing improved temporal resolution. However, due to the high level of the
random component due to turbulence, the narrow band process due to vortex shedding and the deter-
ministic element due to the acoustic excitation, it was found that this approach did not yield satisfactory
results. These problems could conceivably be overcome using a much longer record length, but this is
impractical.

As an alternative, the data which are dominated by low frequency components are modelled as a short series
of sinusoids in the time domain. This offers the benefits of Fourier analysis (i.e. averaging) with the high
temporal resolution achievable with a cross-correlation. For each test, tube motion, local flow velocity and the
output signal from the amplifier (input signal to EMS) was acquired. The signal from the amplifier was used as
a reference in the analysis as it produced a clean sinusoid whereas the flow velocity and tube response
measurements include a random component as both were subject to turbulence in the flow. Note, the level of
turbulence in a tube array is very high. The reference signal was differentiated using a central difference
method

g0ðx0Þ � ½gðx0 þ hÞ � gðx0 � hÞ�2f s (3)

where f s is the sample frequency.
The original and differentiated signals were normalised and the inverse tangent taken on the resultant of the

former divided by the latter. This process presents the reference signal in the form of an angular position.
A snapshot of these signals is shown in Figs. 14(a) and (b). The flow velocity and tube motion can now be
related to an angular position. As the tube motion was forced using a sinusoid at the natural frequency of the
structure it might be expected that this would also be observed in the flow surrounding the cylinder. It can be
seen (Fig. 15(b)) that this is the case. It is also shown that there is significant scatter in the data. Fitting a
harmonic curve to the data removes features from the flow field. However, the phenomenon of concern in the
analysis is fluidelastic instability which is dominated by a low frequency sinusoidal response. It is understood
that other flow features such as turbulence and vortex shedding exist but are not of concern in this analysis.
From the viewing of both the time resolve pressure and velocity measurements in the array jet switching was
not observed in this case (P=d ¼ 1:32). As fluidelastic instability was phenomenon of interest in this case and
was dominated by harmonic motion, the underlying behaviour was extracted fitting a series of harmonic
sinusoids

vM ¼
XM
M¼5

ðAM sinMyþ BM cosMyÞ þ c (4)

where vM is the velocity, y is the angular position of the reference signal, AM and BM are constants. The
constants AM and BM were obtained using a pseudo-inverse method which yielded a least squares fit for an
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over determined set of equations [19]

sin 1y1 sin 2y1 . . . sinMy1 cos y1 cos 2y1 . . . cosMy1
sin 1y2 sin 2y2 . . .

..

.

..

.

sin 1yN sin 2yN . . . sinMyN cos yN cos 2yN . . . cosMyN

2
666666664

3
777777775

A1

A2

..

.

AM

B1

B2

..

.

BM

2
6666666666666664

3
7777777777777775

¼

v1

v2

..

.

vN

2
66664

3
77775 (5)

It was found that M ¼ 5 was sufficient in all cases on the basis of minimising the normalised error between
the fit and the raw data. However, the analysis technique employed to calculate the time delay between the
tube motion and flow reorganisation requires the data to be represented using a single harmonic curve. Hence,
Eq. (4) will be the following in practice:

v1 ¼ A1 sin y1 þ B1 cos y1 þ c (6)

The data used to graphically demonstrate the analysis technique are based on the tests conducted at a free
stream flow velocity of 4m s�1 (Figs. 15 and 16). Figs. 15(a) and (b) present the tube motion and flow velocity
against angular position, respectively. Also plotted is the respective single harmonic fits and it is observed that
the single sinusoid captures the underlying trend in both cases. However, the flow field around the cylinder in a
tube array is highly sheared and at some positions it was clear that the flow velocity does not respond linearly
to the tube motion. It is therefore important to consider how the quality of the fit was determined. This was
determined using a number of criteria. The approach used in this study examined the energy contribution at
each harmonic in conjunction with the auto-correlation between the actual data less the first harmonic fit.
A good fit was deemed to have been achieved when the energy distribution at the first harmonic was greater
than 95%. Below that threshold the fit was deemed to be not of the base line quality. The second criteria also
had to be satisfied. This involved examining the auto-correlation of the raw data less the fit of the first
harmonic. If the fit was good random noise should be all that remains. Viewing the auto-correlation of this
signal determines if the resulting distribution was random or if it contained periodic artefacts.

If the fits from the tube response and the flow velocity are stripped of the DC information, normalised and
plotted together (Fig. 16) it is seen that there is a phase difference between the two traces, specifically, the flow
velocity lags behind the tube response. Hence, there is a time delay between tube motion and the fluid
reorganising which would imply a delay in the resultant force on the cylinder. Using the constants A1 and B1

the phase with respect to the reference signal for both fits can be obtained by obtaining the tan�1 A1=B1.
Subtracting the phases between the two traces yields a phase difference, Df. This was converted into a time
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Fig. 15. First harmonic fit of: (a) tube motion and (b) local flow velocity data.
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delay, Dt, as the excitation frequency is known:

Df ¼ oDt (7)

where o ¼ 2pf n, f n is the excitation frequency.
Rearranging and isolating Dt

Dt ¼
Df
2pf n

(8)

The measured time delay was found to change slightly from test to test with the extent of the deviation from
the mean varying with measurement position. On average a deviation of �10% was observed. This is not
surprising given that the time delay has been obtained from a measurement in a flow which is highly sheared
and turbulent. It is envisaged that the spread in the measured delay would reduce if the delay was directly
measured from the fluid forces on the cylinder. Evidence in support of this argument is shown in Fig. 17 which
presents both the normalised pressure and velocity data at y ¼ 80� when all tubes were rigid. It was observed
that the static surface pressure measurements showed smaller deviation from the mean compared to the
velocity measurements in the array.

A series of tests were conducted to measure the time delay with and without forced acoustics and each
test was repeated five times. Tests were conducted at all positions and flow velocities reported above. It was
discussed previously that the measured time delay was found to wander slightly from test to test. The average
(of five tests) time delays with and without acoustic resonance are summarised in Table 1. In some instances a
change in time delay with forced acoustics occurred but there was an overlap between the individual time
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Table 1

Time delay (ms) at a range of positions in the flow field with and without acoustic resonance.

Position U ¼ 4m s�1 U ¼ 7m s�1 U ¼ 10m s�1

AR AR AR

15� (v-dir) 3.0 0 3.5 3.7 4.4 2.3

30� (u-dir) 5.1 1.4 3.4 5.7 3.5 3.6

30� (v-dir) 6.6 0 4.9 5.4 5.8 0

90� (u-dir) 42.0 45.9 52.4 51.1 – –

150� (u-dir) – – 5.5 9.1 4.6 3.4

165� (u-dir) 9.3 7.9 7.9 8.1 7.0 6.0

165� (v-dir) 10.3 8.1 8.8 9.1 8.0 6.8

Italic numbers—illustrates the hot-wire positions and velocities where overlap between the individual time delays measured with and

without forced acoustics occurs.
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delays measured with and without acoustic resonance. These are denoted by the shading in Table 1. In these
instances no conclusive outcome as to the influence of acoustic resonance was realised. However, at the other
positions a definitive phenomenon emerged: the acoustic resonance modified the time delay. In some instances
the time delay was increased; more often the time delay was reduced. The reduced duration of the time delay
resulting in a reduction in tube oscillation is in agreement with the model proposed by Price and Paidoussis
[10]. Furthermore, the proposition that modification of the time delay shifts the stability threshold is in
agreement with the conclusions of Andjelic and Popp [17] which were based on experimental considerations.

It is also apparent from Table 1 that there is variability in the time delays response to acoustic resonance. It
is not clear why this is the case. It is possible that there is a flow feature in the tube array but as there is no
good physical model for the time delay it is difficult to provide a rigorous conclusion. Further work is required
to explore this result but this can only be rigorously examined when the time delay between tube motion and
fluid forces is measured.

Assuming that acoustic resonance modifies the time delay, how could this process be justified physically?
Granger and Paidoussis [13] formulation of a memory effect (cause of the time delay) refer to vorticity generated
on the surface of the cylinder resulting from tube motion. This vorticity is diffused and convected downstream
by the mean flow. When the vorticity is convected far enough downstream a new steady state is reached. It was
shown that the effect of acoustic resonance on the static fluid forces was negligible (i.e. the vorticity generation
process). So, as acoustic resonance was observed to have modified the time delay it must be interfering with the
vorticity diffusion–convection process. It was also observed that the acoustic resonance shifted the mean velocity
(both increasing and decreasing) at some positions as well as the form of the distribution with reference to the
angular position of the tube vibration. This is curious, as at the current tube position the acoustic particle
velocity corresponds to a minimum in this region. In this instance it appears that acoustic resonance is causing
streaming. It is not unreasonable to suggest that the acoustic streaming may be interfering with the
diffusion–convection of vorticity process from the surface of the cylinder suggested by Granger and Paidoussis.

It was discussed above that the effect of acoustic resonance on fluidelastic instability was negligible for a
single flexible cylinder in the pitch ratio of 1.58. As a result, the analysis determining the nature of the
interaction between acoustic resonance and fluidelastic instability was limited to the pitch ratio of 1.32.
However, using the findings from the analysis it will now be discussed as to why acoustic resonance had no
effect on the pitch ratio of 1.58. It was reported that jet switching was observed in the pitch ratio of 1.58. It is
likely that the jet switching reported to be responsible for the poorly established limit cycle amplitudes also
interfered with the convection process (time delay mechanism) destroying any subtle changes in the convection
process caused by acoustic resonance. Fig. 4 shows the effect of acoustic resonance on fluidelastic instability in
the pitch ratio of 1.32. It was observed that the effect of the forced acoustics on fluidelastic instability was not
instantaneous but required time for a new steady state to be reached. It is possible that the jet switching
observed in the pitch ratio of 1.58 prevented a cumulative effect. However, this is merely conjectural and
further work is required to verify this and the hypothesis that acoustic streaming may be interfering with the
diffusion–convection of vorticity process from the surface of the cylinder.
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5. Conclusions

It has been shown that acoustic resonance affects fluidelastic instability and this has been quantified.
In an attempt to better understand the interaction between fluidelastic instability and acoustic resonance for
P=d ¼ 1:32 two possibilities are examined based on the framework proposed by Price and Paidoussis [10] to
model fluidelastic instability. Acoustic resonance does not change the static fluid force. It has also been shown
that at some hot-wire (local flow velocity) positions a definitive change in the time delay between tube motion
and the flow field around the cylinder emerged as a result of acoustic resonance. It is also clear that acoustic
resonance modifies the mean velocity at some positions in this region where it is thought this results from
acoustic streaming. Further work is required to explore the time delay mechanism and hence the effect of
acoustic resonance on it.
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